Việc Xác định Giao Tuyến Của Hai Mặt Phẳng là một kỹ năng quan trọng trong hình học không gian. Bài viết này sẽ trình bày chi tiết phương pháp, kèm theo ví dụ minh họa và bài tập tự luyện để bạn nắm vững kiến thức này.
A. Phương Pháp Xác Định Giao Tuyến
Để xác định giao tuyến của hai mặt phẳng, ta thực hiện các bước sau:
- Tìm hai điểm chung thuộc cả hai mặt phẳng.
- Nối hai điểm chung đó, ta được giao tuyến cần tìm.
Lưu ý quan trọng: Điểm chung thứ nhất thường dễ tìm thấy. Để tìm điểm chung thứ hai, ta có thể tìm hai đường thẳng, mỗi đường thẳng nằm trên một mặt phẳng, đồng thời cùng nằm trong một mặt phẳng thứ ba và không song song. Giao điểm của hai đường thẳng này chính là điểm chung thứ hai.
Chú ý: Giao tuyến là đường thẳng chung của hai mặt phẳng, tức là nó thuộc cả hai mặt phẳng đó.
B. Ví dụ minh họa
Ví dụ 1: Cho hình chóp S.ABCD có đáy là hình thang, đáy lớn AB. Gọi O là giao điểm của AC và BD; I là giao điểm của AD và BC. Tìm mệnh đề sai?
A. Hình chóp S.ABCD có 4 mặt bên.
B. Giao tuyến của hai mặt phẳng (SAC) và (SBD) là SO.
C. Giao tuyến của hai mặt phẳng (SAD) và (SBC) là SI.
D. Đường thẳng SO nhìn thấy nên được biểu diễn bằng nét đứt.
Lời giải
Xét các phương án:
- Phương án A: Hình chóp S.ABCD có 4 mặt bên là: (SAB); (SBC); (SCD) và (SAD). Do đó A đúng.
- Phương án B:
Do đó B đúng
- Tương tự, ta có SI = (SAD) ∩ (SBC). Do đó C đúng.
- Đường thẳng SO không nhìn thấy nên được biểu diễn bằng nét đứt. Do đó D sai. Chọn D.
Ví dụ 2: Cho tứ giác ABCD sao cho các cạnh đối không song song với nhau. Lấy một điểm S không thuộc mặt phẳng (ABCD). Xác định giao tuyến của mặt phẳng (SAC) và mặt phẳng (SBD).
A. SO trong đó O là giao điểm của AC và BD.
B. SI trong đó I là giao điểm của AB và CD.
C. SE trong đó E là giao điểm của AD và BC.
D. Đáp án khác
Lời giải
-
Ta có : S ∈ (SAC) ∩ (SBD) (1)
-
Trong mp(ABCD) gọi giao điểm của AC và BD là O. ( bạn đọc tự vẽ hình)
-
Vì
-
Từ (1) và (2) suy ra SO = (SAC) ∩ (SBD)
Chọn A
Ví dụ 3: Cho tứ giác ABCD sao cho các cạnh đối không song song với nhau. Lấy một điểm S không thuộc mặt phẳng (ABCD). Xác định giao tuyến của mặt phẳng (SAB) và mặt phẳng (SCD)
A. SO trong đó O là giao điểm của AC và BD
B. SI trong đó I là giao điểm của AB và CD
C. SE trong đó E là giao điểm của AD và BC
D. Đáp án khác
Lời giải
- Ta có: S ∈ (SAB) ∩ (SCD) (1)
- Trong mp(ABCD) gọi giao điểm của AB và CD là I. (bạn đọc tự vẽ hình)
Vì
- Từ (1) và (2) suy ra SI = (SAB) ∩ (SCD)
Chọn B
Ví dụ 4: Cho tứ diện ABCD. Gọi G là trọng tâm tam giác BCD. Giao tuyến của mặt phẳng (ACD) và (GAB) là:
A. AN trong đó N là trung điểm CD
B. AM trong đó M là trung điểm của AB.
C. AH trong đó H là hình chiếu của A lên BG.
D. AK trong đó K là hình chiếu của C lên BD.
Lời giải
- Ta có: A ∈ (ABG) ∩ (ACD) (1)
- Gọi N là giao điểm của BG và CD. Khi đó N là trung điểm CD.
Từ (1) và (2) suy ra: NA = (ABG) ∩ (ACD)
Chọn A.
Ví dụ 5: Cho điểm A không nằm trên mp(α) – chứa tam giác BCD . Lấy E; F là các điểm lần lượt nằm trên cạnh AB; AC. Khi EF và BC cắt nhau tại I; thì I không là điểm chung của 2 mặt phẳng nào sau đây ?
A. (BCD) và (DEF)
B. (BCD) và (ABC)
C. (BCD) và (AEF)
D. (BCD) và (ABD)
Lời giải
- Do I là giao điểm của EF và BC nên I ∈ BC; I ∈ (BCD). (1)
- Hơn nữa I ∈ EF mà
Từ (1) và (2) suy ra:
Chọn D
Ví dụ 6: Cho tứ diện ABCD. Gọi M; N lần lượt là trung điểm của AC và CD. Giao tuyến của 2 mặt phẳng (MBD) và (ABN) là:
A. Đường thẳng MN
B. Đường thẳng AM
C. Đường thẳng BG (G là trọng tâm tam giác ACD)
D. Đường thẳng AH ( H là trực tâm tam giác ACD)
Lời giải
- Ta có: B ∈ (MBD) ∩ (ABN). (1)
- Vì M; N lần lượt là trung điểm của AC và CD nên suy ra AN và DM là hai trung tuyến của tam giác ACD. Gọi giao điểm của AN và DM là G. Khi đó: G là trọng tâm tam giác ACD
Từ (1) và ( 2) suy ra: BG = (ABN) ∩ (MBD)
Chọn C
Ví dụ 7: Cho hình chóp S.ABCD có đáy là hình thang ABCD ( AB// CD). Khẳng định nào sau đây sai?
A. Hình chóp S.ABCD có mặt bên
B. Giao tuyến của hai mặt phẳng (SAC) và (SBD) là SO (O là giao điểm của AC và BD)
C. Giao tuyến của hai mặt phẳng (SAD) và (SBC) là SI (I là giao điểm của AD và BC)
D. Giao tuyến của hai mặt phẳng (SAB) và (SAD) là đường trung bình của ABCD
Lời giải
Chọn D
- Hình chóp S.ABCD có mặt bên (SAB), (SBC); (SCD) và (SAD) nên A đúng.
- S và O là hai điểm chung của (SAC) và (SBD) nên B đúng.
- S và I là hai điểm chung của (SAD) và (SBC) nên C đúng.
- Giao tuyến của (SAB) và (SAD) là SA, rõ ràng SA không thể là đường trung bình của hình thang ABCD.
Ví dụ 8: Cho tứ diện ABCD. Gọi O là một điểm bên trong tam giác BCD và M là một điểm trên đoạn AO. Gọi I và J là hai điểm trên cạnh BC; BD. Giả sử IJ cắt CD tại K, BO cắt IJ tại E và cắt CD tại H, ME cắt AH tại F. Giao tuyến của hai mặt phẳng (MIJ) và (ACD) là đường thẳng:
A. KM B. AK C. MF D. KF
Lời giải
Chọn D.
- Do K là giao điểm của IJ và CD nên: K ∈ (MIJ) ∩ (ACD) (1)
- Ta có F là giao điểm của ME và AH
Mà AH ⊂ (ACD), ME ⊂ (MIJ) nên F ∈ (MIJ) ∩ (ACD) (2)
Từ (1) và (2) có (MIJ) ∩ (ACD) = KF
Ví dụ 9: Cho hình chóp S.ABCD. Gọi I là trung điểm của SD, J là điểm trên SC và không trùng trung điểm SC. Giao tuyến của hai mặt phẳng (ABCD) và (AIJ) là:
A. AK với K là giao điểm IJ và BC
B. AH với H là giao điểm IJ và AB
C. AG với G là giao điểm IJ và AD
D. AF với F là giao điểm IJ và CD
Lời giải
Chọn D.
- A là điểm chung thứ nhất của (ABCD) và (AIJ)
- IJ và CD cắt nhau tại F, còn IJ không cắt BC; AD; AB
Nên F là điểm chung thứ hai của (ABCD) và (AIJ)
Vậy giao tuyến của (ABCD) và (AIJ) là AF
C. Bài tập trắc nghiệm
Câu 1: Cho tứ diện S.ABC. Lấy điểm E; F lần lượt trên đoạn SA; SB và điểm G trọng tâm tam giác ABC . Tìm giao tuyến của mp(EFG) và mp(SBC)
A. FM trong đó M là giao điểm của AB và EG.
B. FN trong đó N là giao điểm của AB và EF.
C. FT trong đó T là giao điểm của EG và SB.
D. Đáp án khác
Lời giải:
- Trong mp(SAB); gọi H là giao điểm của EF và AB.
- Trong mp(ABC); gọi HG cắt AC; BC lần lượt tại I và J.
- Ta có:
Và
Từ (1) và (2) suy ra: JF = (EFG) ∩ (SBC)
Chọn D
Câu 2: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M; N lần lượt là trung điểm AD và BC. Gọi O là giao điểm của AC và BD. Giao tuyến của hai mặt phẳng (SMN) và (SAC) là:
A. SD
B. SO
C. SG (G là trung điểm của AB)
D. SF (F là trung điểm của MD)
Lời giải:
- Ta có: S ∈ (SMN) ∩ (SAC) (1)
- Trong mặt phẳng (ABCD) có:
AM = NC = 1/2 AD và AM // NC
⇒ Tứ giác AM CN là hình bình hành.
Mà O là trung điểm của AC nên O cũng là trung điểm của MN (tính chất hình bình hành)
- Ta có:
Từ (1) và (2) suy ra: SO = (SAC) ∩ (SMN)
Chọn B
(Các câu 3-9 và bài tập tự luyện được lược bỏ để tránh lặp lại và đảm bảo độ dài phù hợp)
D. Bài tập tự luyện
Bài 1. Cho hình chóp S.ABCD có đáy là hình thang, đáy lớn AB. Gọi O là giao điểm của AC và BD; I là giao điểm của AD và BC. Tìm mệnh đề sai? Xác định giao tuyến giữa 2 mặt phẳng:
a) (SAC) và (SBD).
b) (SAD) và (SBC)
Bài 2. Cho tứ giác ABCD sao cho các cạnh đối không song song với nhau. Lấy một điểm S không thuộc mặt phẳng (ABCD). Xác định giao tuyến của mặt phẳng (SAC) và mặt phẳng (SBD).
Bài 3. Cho tứ giác ABCD sao cho các cạnh đối không song song với nhau. Lấy một điểm S không thuộc mặt phẳng (ABCD). Xác định giao tuyến của mặt phẳng (SAB) và mặt phẳng (SCD).
Bài 4. Cho tứ diện ABCD. Gọi G là trọng tâm tam giác BCD. Xác định giao tuyến của mặt phẳng (ACD) và (GAB).
Bài 5. Cho hình chóp S.ABC. Gọi K, M lần lượt là hai điểm trên cạnh SA và SC. Gọi N là trung điểm của cạnh BC. Tìm giao tuyến của các cặp mặt phẳng sau:
a) (SAN) và (ABM).
b) (SAN) và (BCK).
Bài viết đã trình bày chi tiết phương pháp xác định giao tuyến của hai mặt phẳng, kèm theo các ví dụ minh họa cụ thể và bài tập tự luyện. Hy vọng bạn sẽ nắm vững kiến thức này và áp dụng thành công vào giải các bài toán hình học không gian.